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Equilibrium two-body correlations in liquids composed of deformable molecules are formulated with use of
the density-functional theory and the interaction site formalism. As applications, we study two model systems,
liquid nitrogen and simplified liquidn butane, in which each molecule has two stable bond lengths. The latter
may be considered as a toy model to study conformational equilibrium.@S1063-651X~96!07710-0#

PACS number~s!: 47.27.Te, 05.20.Gg, 05.70.2a

The density-functional theory,~DFT!, of nonuniform flu-
ids plays an important role in classical many-body theory
@1#. The theory has been useful for its simplicity and physical
clarity and has contributed a great deal not only for studies
on liquid-gas or liquid-solid phase transformations including
interfacial and nucleation phenomena@2# but also for studies
on structures of the uniform liquids@3#. In this paper we
apply the DFT to the calculation of the~static! structures of
liquids composed of deformable molecules@4#.

First we introduce the interaction-site formalism~ISF! @5#,
which we employ to describe molecular~polyatomic! liq-
uids, and define some two-body correlation functions that we
try to calculate based on our present integral equation. Ex-
plicitly we consider a one-component system composed of
molecules withS interaction sitesa51,2, . . . ,S. The density
of the sitea at positionr is expressed as

na~r ![(
i51

N

d~r2r i ,a!, ~1!

whereN is the total number of the molecules andr i ,a de-
notes the position of the sitea of the i th molecule. With use
of the equilibrium ensemble average, denoted by angular
brackets, the intra- and intermolecular correlation functions
vab~r ,r 8! andhab~r ,r 8!, respectively, are defined through the
relation

xab~r ,r 8![Š@na~r !2^na~r !&#@nb~r !2^nb~r !&#‹

5nvab~r ,r 8!1n2hab~r ,r 8!, ~2!

wheren5N/V, with V the volume of the system. From the
definition ~2! the following normalization is readily con-
firmed:

vaa~r ,r 8!5d~r2r 8!, E dr 8vab~r ,r 8!51. ~3!

For molecular liquids we have two kinds of direct correlation
functions ~DCFs!, the intra-DCFc(0)(r ) and the inter-DCF
c(r ), which are defined by@5,7~a!#

(
g
E dr 8@dagd~r2r 8!2ncag

~0!~r ,r 8!#vgb~r 8,r 9!

5dabd~r2r 9!, ~4!

hab~r ,r-!5(
gd

E dr 8E dr 9vag~r ,r 8!cgd~r 8,r 9!

3@vdb~r 9,r-!1nhdb~r 9,r-!#. ~5!

Equations~4! and ~5! are called the ISF Ornstein-Zernike
~OZ! relations. Since our system is assumed to be uniform
and isotropic, all the correlation functions in Eqs.~4! and~5!,
such ashab~r ,r 8!, depend on onlyur2r 8u. Thus with use of a
convolution notation* , Eq. ~5! is expressed concisely as

hab5(
gd

vag* cgd* @vdb1nhdb#. ~58!

We now turn to the DFT for the system composed of
N11 identical molecules. That is, we add one moleculei50,
which is called the blue molecule. In order to apply the Per-
cus trick@6#, which is expressed by Eqs.~12! and~13! below,
we fix an arbitrary site, say,a0, of the blue molecule at the
origin in our coordinate system and calculate the free-energy
functionalF@na~r !,na

~0!~r !#, with na
~0!~r ! ~aÞa0! denoting the

microscopic density of the sitea of the blue molecule. By
applying the variational principle to theF, we can derive a
closed set of equations for two-body correlations introduced
above. The free-energy functionalF can be expressed as

F5FN1F01F int , ~6!

whereFN(F0) is the free energy of theN molecules~the
blue molecule! and F int denotes the free energy from the
interaction between theN molecules and the blue molecule.
With use of the DFT for polyatomic liquids by Chandler,
McCoy, and Singer@7# and employing the functional form
that corresponds to the extended RISM theory@8,9#, we take*Author to whom correspondence should be addressed.
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FN /kBT5(
a

E dr na~r !@ ln na~r !La
321#

2
1

2 (
a,g

E drE dr 8dna~r !c̄ag~r ,r 8!dng~r 8!,

~7!

wherec̄ag~r ,r 8!5cag~r ,r 8!1cag
~0!~r ,r 8!, dna~r !5na~r !2n, and

La is the thermal wavelength for the site speciesa. In writ-
ing downF0 andF int , we note that the sitea0 of the blue
molecule interacts with another sitea of the blue ~or the
surrounding! molecule through the true site-site potential
faa0
a (r ) @or faa0

e (r )#. From this it follows that

F0 /kBT5 (
a ~Þa0!

E dr na
~0!~r !@ ln na

~0!~r !La
321#

2
1

2 (
a,g ~Þa0!

E drE dr 8na
~0!~r !cag

~0!~r ,r 8!ng
~0!

3~r 8!1 (
a ~Þa0!

E dr @fa0a
a ~r !/kBT#na

~0!~r !, ~8!

F int /kBT52 (
a ~Þa0!,g

E drE dr 8na
~0!~r !cag~r ,r 8!dng~r 8!

1(
g
E dr @fa0g

e ~r !/kBT#ng~r !. ~9!

Here we regard2kBTc
(0)(r ) and2kBTc(r ) as the effective

intra- and intermolecular site-site potentials, respectively, in
conformity with Eq.~7!.

With these preparations we proceed to the variational
principle of the DFT@3#, which enables us to express the
two-body correlationshab ,vab in terms of the intra- and
inter-DCFs. Equilibrium density fieldsna,eq~r ! for all a and
na,eq

~0! (r ! for aÞa0 are determined as the solution to the varia-
tional equations

dF/dna~r !5ma , ~10!

dF/dna
~0!~r !5ma

~0! ~aÞa0!. ~11!

From the Percus trick@6#, which enables us to discuss the
two-body correlations, such as the radial distribution func-
tions, based on the one-body distribution, we notice that

ngaa0
~r ![n~haa0

11!5na,eq~r !, ~12!

vaa0
~r !5na,eq

~0! ~r !, ~13!

where the equilibrium density fieldsna,eq~r ! and
na,eq

~0! ~r ! ~aÞa0! depend on onlyr from the isotropy of the
system around a fixed sitea0. The chemical potentialsma
and ma

~0! are determined from the boundary conditions
gaa0

(r )→1 as r→` and the normalization, the second of
Eqs.~3!. From Eqs.~10!–~13! we have

lngaa0
~r !5(

g
c̄ag* nhga0

1cag*vga0
@12dga0

#

2bfaa0
e ~r !, ~14!

lnvaa0
~r !5(

g
cag* nhga0

1cag
~0!
*vga0

@12dga0
#

2bfaa0
a ~r !1C, ~15!

where the constantC is determined from the normalization
Eq. ~3!. With use of the ISF OZ relations and Eq.~14!, it is
not difficult to derive the hypernetted-chain~HNC! equation
@3#

gab[11hab5exp@2bfab
e 1hab2cab#. ~16!

Equation~15!, which represents our closure equation, can
be interpreted as follows. The right-hand side of Eq.~15!,
divided by2b, which denotes the effective potential on the
site a of the blue molecule, consists of the intramolecular
contribution 2kBT(gcag

(0)
*vga0

@12dga0
#1faa0

a (r ) and

the intermolecular one2kBT(gcag* nhga0
. The former is

concerned with the binding and thermal expansion of each
molecule and the latter with packing or pressure effects. By
solving the set of equations derived here we can discuss
some interesting interplay~in high-density liquids! of these
two contributions as shown below.

As the simplest system for us to apply the general method
for calculating the equilibrium two-body correlations, we
take liquids composed of two-site~S52! homonuclear mol-
ecules. More explicitly, we consider two models: liquid ni-
trogen~LN! and modifiedn-butane~MNB! liquid with two
stable bond lengths. Liquidn butane is extensively studied in
connection with a conformational transition between the
trans and gauche states from both theoretical and~numerical!
experimental sides@12,13# and our MNB may serve as a toy
model for studying conformational equilibrium.

First we consider the LN for which the intermolecular
site-site potentialfe(r ) is chosen to be a Lennard-Jones one

fe~r !54«@~s/r !122~s/r !6#, ~17!

with s53.341 A and«50.6075310214 ergs@10,8~c!#. As for
the intramolecular interactionfa(r ), we take a Morse poten-
tial

fa~r !5Ue@12exp$2a~r2r e!%#2 ~LN!, ~18!

with Ue51.5865310211 ergs,a52.443 A21, andr e51.1 A
@11#.

For the MNB we first replace the four-site model, often
used to represent then-butane molecule by the effective two-
site one as shown in Fig. 1. As for the intermolecular site-site
potential we choose the same one as that used for the LN,
Eq. ~17!. For the intramolecular site-site potential we take a
double-well potential

fa~r !5U0~r1a1!~r1a2!~r1a3!~r1a4! ~MNB!,
~19!
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with U052.175310210 ergs,a1521.0508 A,a2521.1798
A, a3521.304 A, anda4521.4573 A. These parameter val-
ues are chosen based on the following reasoning: For the
two-siten-butane molecule we denote byl g and l t the bond
length of the gauche and trans states, respectively~Fig. 1!.
First we define two nondimensional quantities that compare
energy and length scales between the LN and then-butane
systems:

Re[«LN /«NB , Rl[r e / l g , ~20!

where«NB denotes the energy parameter of the Lenard-Jones
potential forn butane@12#. As for fa(r ), we approximate
the Scott-Scheraga~SS! @14# potential by a double-well po-
tential ~19! in which the original length scale in the SS po-
tential is multiplied byRl so thatl g corresponds tor e and the
original energy sacle~especially the barrier height! in the SS
potential is multiplied byRe since we use the same interac-
tion fe(r ) for both the LN and the MNB. Figures 2~a! and
2~b! showfa(r ) for the LN and the MNB, respectively. The
trans state with long bond length has lower energy compared
to the gauche state.

From the symmetry inherent in our model systems, there
are five unknown quantities for the static correlations intro-
duced up to now, that is, g115g225g12[g, c11
5c225c12[c, v12[v, c 11

(0)5c 22
(0), andc 12

(0). The HNC equa-
tions ~16! and ~15! take the form

g511h5exp@2bfe1h2c#, ~21!

lnv52nc* h1c11
~0!
*v2bfa1C. ~22!

The ISF OZ relations~4! and~5! are reduced, respectively, to

c11
~0!52c12

~0!
*v, v5n@c12

~0!1c11
~0!
*v#, ~23!

h5c12v* c1v* c*v12n@c* h1v* c* h#. ~24!

Thus the set of equations~21!–~24! forms the closed equa-
tions for five unknowns, which we solve numerically by an
iteration method as follows. We start from the trialv for the
rigid molecule, which is expressed in terms of the Diracd
function @5#, and solve Eqs.~21! and ~24! to obtain the trial
h ~or g! andc functions. Then we turn to Eqs.~22! and~23!,
which are now solved to obtain a newv and c11

~0! and c12
~0! .

This procedure is repeated until it converges. As is often the
case in solving the HNC equations, we first start from a
high-temperature, low-density state and gradually approach
the liquid state of our interest. Usually it takes more than
1000 iterations to achieve convergence.

Now we turn to our numerical results obtained by solving
the integral equations. First we consider LN. Figures 3~a!
and 3~b! show, respectively, the density (n) and temperature
(T) dependence of the intramolecular correlationv(r ). We
notice from Fig. 3~a! that asn increases~with T fixed at
typical liquid temperature, say,T572.2 K!, the center of
v(r ) shifts to the left indicating that molecules shrink due to
packing effects. As for thermal effects onv(r ) we observe,
as expected, broadening of the distributionv(r ) as T in-

FIG. 1. Originaln-butane model with four sites and the MNB
with two sites.

FIG. 2. Intramolecular site-site potentialfa(r ) with r in units of
angstroms for~a! the LN in units of 10210 ergs and~b! the MNB in
units of 10213 ergs.
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creases~with n fixed at typical liquid densityn50.018 66
A23!. Figure 3 shows that changes inv(r ) are mainly pro-
duced by thermal effects. In order to examine intramolecular
structural changes more closely we show in Fig. 4 the aver-
age bond length, defined by*dr r v(r ), as a function ofT
for various densities. We see that except for very-high-

density liquids, the bond length simply increases asT in-
creases. However, at the highest density we examined~n
50.024 A23!, molecules seem to shrink asT increases. This
suggests that at high density packing or pressure effects can
dominate thermal-expansion effects at least at low tempera-
ture. Before proceeding to MNB we note that the radial dis-
tribution functiong(r ) is only slightly changed by allowing
nonrigidity for molecules. More precisely, it is changed
maximally by 1024 near the first peak ofg(r ).

We now consider MNB, for which we expect from Fig. 2
a more drastic role played by molecular nonrigidity than a
for LN. In Fig. 5 we showv(r ) for variousn andT. Reflect-
ing the double-well potential Eq.~19!, v(r ) usually has two
peaks, one nearr5 l g51.1 A and the otherr5 l t51.4 A. In
Figs. 5~a! and 5~b! the n(T) dependence ofv(r ) is plotted.
As observed by~computer! experiments@13#, the population
of molecules in the gauche state is seen from Fig. 5~a! to
increase asn becomes large~with T kept constant!. This is
due to packing effects, which are eminent at high densities
@12#. Also in Fig. 5~b! we observe similar behaviors asT
increases~with n kept constant!. This point is shown more
quantitatively in Fig. 6, which depicts the fraction of mol-
ecules in the short-bond~gauche! state as a function ofT for
various n’s. We notice that, except for extremely-high-
density liquids, the fraction increases asT increases, ap-

FIG. 3. Intramolecular two-body correlationsv(r ) of the LN for
~a! n50.015 and 0.024 A23 ~T572.2 K! and~b! T572.2, 200, and
500 K ~n50.018 66 A23! with r in units of angstroms.

FIG. 4. Average bond length in units of amperes of the LN as a
function of T(K) for various densities. From the topn50.015,
0.017, 0.01866, 0.02, 0.022, and 0.024 A23.

FIG. 5. Intramolecular two-body correlationsv(r ) of the MNB
for ~a! n50.015, 0.018 66, and 0.0220 A23 ~T572.2 K! and ~b!
T572.2, 200, and 500 K~n50.018 66 A23! with r in units of
angstroms.
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proaching 1
2 as T→`. At high density the gauche state is

populated more at lowT and the fraction approaches12 asT
increases. Finally, we consider effects of this molecular de-
formability on intermolecular correlations. In Fig. 7 we com-
pare two radial distribution functions: one for the MNB liq-
uid obtained by solving the integral equations~21!–~24! and
the other, denoted bygr(r ), for a rigid model, which we
calculate by the formula

gr~r !5 f ggr~r u l g!1 f tgr~r u l t!, ~25!

wheref g ( f t) denotes the fraction of molecules in the gauche
~trans! state andgr(r u l g) is the radial distribution function
for the rigid molecular liquid with bond length fixed atl g .
Thus we use Eqs.~21! and ~24! and the rigid condition
v(r )5d(r2 l g) to calculategr(r u l g). From Fig. 7 we note
that deformability makesg(r ) smooth, washing out the
shoulder of the first peak usually observed for rigid molecu-
lar liquids due to strong configurational constraint imposed
by rigidity. For larger the two g(r )’s nearly coincide as
expected. From the above we may conclude that our ap-
proach, based on the integral equations~21!–~24!, produces
static correlations in accord with existing experiments. How-
ever, it is necessary to study more realistic systems in order
to achieve a more quantitative comparison with experiments.

In this paper we studied equilibrium two-body correla-
tionsv andh in Eq. ~2!, based on the ISF@5# and DFT@7#.
By applying the Percus trick@6# to both the intra- and inter-

molecular structures, we derived and solved different closure
equations and discussed thermal and pressure~packing! ef-
fects in deformable molecular liquids. Important works
@12,13,15# have already been published dealing with similar
problems, and we conclude this paper with some comments.
For small molecules Chandler and co-workers@12# have de-
veloped a theory for two-body correlations in liquids based
on the ISF, in which the intra- and intermolecular correla-
tions are determined self-consistently. In treating the in-
tramolecular correlationvab , they introduce and calculate a
cavity distribution function instead of using the ISF OZ re-
lation ~15!. Furthermore, they use the Percus-Yevick closure
~RISM approximation! instead of the HNC closure~16!. It is
noted that in spite of these apparent differences, both theo-
ries can reproduce the packing effects observed in high-
density liquids@13#. The ISF and DFT are also utilized ex-
tensively to study equilibrium properties of polymer
solutions @15#. We are currently interested in generalizing
our approach developed here for small molecules so that it
could be applied to polymer systems. Also it is interesting to
make use of the time-dependent DFT@16# to discuss dy-
namic aspects of isomerization. These points are planned to
be discussed separately in the future.
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