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Statistical mechanics of deformable molecular liquids: Thermal expansion and isomerization
of diatomic molecules
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Equilibrium two-body correlations in liquids composed of deformable molecules are formulated with use of
the density-functional theory and the interaction site formalism. As applications, we study two model systems,
liquid nitrogen and simplified liquish butane, in which each molecule has two stable bond lengths. The latter
may be considered as a toy model to study conformational equilibfi8i063-651X%96)07710-0

PACS numbg(s): 47.27.Te, 05.20.Gg, 05.70a

The density-functional theoryPFT), of nonuniform flu-
ids plays an important role in classical many-body theory > jdf'[5ay5(f—r')—”CXO;(f,F')]wyﬁ(r',f”)
[1]. The theory has been useful for its simplicity and physical 4
clarity and has contributed a great deal not only for studies = 8,p0(r—r"), (4)
on liquid-gas or liquid-solid phase transformations including
interfacial and nucleation phenomefi®j but also for studies

on structures of the uniform liquidg3]. In this paper we o f ,f . , .
apply the DFT to the calculation of thstatig structures of Rap(r.r )_% dr’ | drfee,(r,r')e,s(r’.r")
liquids composed of deformable molecu(ds.

First we introduce the interaction-site formali§t8F) [5], X[wgp(r”,r")+nhsg(r”,r")]. )

which we employ to describe molecul§polyatomiqg lig-

uids, and define some two-body correlation functions that W& quations(4) and (5) are called the ISF Ornstein-Zernike

trly t? calculate _k()jased on our present integral equatlon.dE 0Z) relations. Since our system is assumed to be uniform
plicitly we consider a one-component system composed Ol ., jsqtropic, all the correlation functions in E¢&) and(5),

moleculgs withS int_e_ractign sitegx=1,2, . .. S. The density such ash B(r r'), depend on onlyr —r'|. Thus with use of a
of the sitea at positionr is expressed as convolution notation, Eq. (5) is expressed concisely as

N
Ny(N=2 8(r=ri4), (D
=1 haﬁ=% ®4y* Cys*[@sp+Nhsgl. (5
whereN is the total number of the molecules and, de-
notes the position of the site of theith molecule. With use
of the equilibrium ensemble average, denoted by angular We now turn to the DFT for the system composed of
brackets, the intra- and intermolecular correlation functiond\ *1 identical molecules. That is, we add one moleg¢e#®,
wa(r,r) andh,4(r,r"), respectively, are defined through the which is called the blue molecule. In order to apply the Per-

relation cus trick[6], which is expressed by Egd.2) and(13) below,
we fix an arbitrary site, sayy,, of the blue molecule at the
Xap(F T )= (r) = (N (r))I[ng(r)—(ng(r)) 1) origin in our coordinate system and calculate the free-energy

functional F[n(r),n%(r)], with n©(r) (a#a,) denoting the
microscopic density of the site of the blue molecule. By
applying the variational principle to the, we can derive a
closed set of equations for two-body correlations introduced
above. The free-energy functionalcan be expressed as

=Nw (1,1 +Nn%h,e(r,r"), 2

wheren=N/V, with V the volume of the system. From the
definition (2) the following normalization is readily con-
firmed:

w,a(r,r)=38(r—r"), Jdr’waﬁ(r,r’)zl. (3) F=Fn+Fo+Fint, (6)

For molecular liquids we have two kinds of direct correlationwhere Fy(F,) is the free energy of th& molecules(the
functions (DCFs), the intra-DCFc(%)(r) and the inter-DCF  blue moleculg and Fi denotes the free energy from the
c(r), which are defined bj5,7(a)] interaction between thH molecules and the blue molecule.
With use of the DFT for polyatomic liquids by Chandler,
McCoy, and Singef7] and employing the functional form
* Author to whom correspondence should be addressed. that corresponds to the extended RISM thg@&,g], we take
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FN/kBT=§ f dr n (r)[In ny(r)A3—1] |ngaa0(r):; Cay* N +Coy* w0 [1- 8, ]
1 ! ~ ' ’ _B¢ia (r)’ (14)
_Eazy er dr’ N, (r)Cy,(r,r'yén(r’), 0
(7 Inwmo(r)zzy Cay* NN + cgoy)*wy%[l— 8 ya]
wherec, (r,r')=c,.(r,r')+cOr.r"), sn(r)=n,r)—n, and a
A,is theythermal vyvavelengtﬁ for the site speciedn writ- _'B¢aao(r)+c’ (19

ing downF, and F;,;, we note that the sitey of the blue _ _ o
molecule interacts with another site of the blue (or the  Where the constar€ is determined from the normalization

surrounding molecule through the true site-site potential EQ. (3). With use of the ISF OZ relations and E@4), it is

#2. (1) [or ¢&_ (r)]. From this it follows that not difficult to derive the hypernetted-chaiHNC) equation
0(0(0 aao [3]
FolkgT= > Jdr nO(m)[In n@(r)A3—1] Oap=1thg=exg—Bogsths—Capl. (16
a (#ag)

1 Equation(15), which represents our closure equation, can
= > f drf dr'n@(r)c@(r,r')n® be interpreted as follows. The right-hand side of ELp),
2 0,y #ag) “ “ 7 divided by — B, which denotes the effective potential on the
site « of the blue molecule, consists of the intramolecular
X(r')+ 2 f dr[ ¢2 a(r)/kBT]n(C?)(r), (8) contribution —kBTE.YCE)f’y)* w7a0[1—57a0]+¢g%(r) and
@ (Fag) ° the intermolecular one-kgTS c,,*nh,, . The former is
concerned with the binding and thermal expansion of each
Fii/keT=— Z f drf dr'n©(r)c,(r,r)on.(r') molecule and the latter with packing or pressure effects. By
" a (Fag)y * “ Y solving the set of equations derived here we can discuss
some interesting interplagin high-density liquids of these
e two contributions as shown below.
" Ey f dr[d)aoy(r)/kBT]ny(r). © As the simplest system for us to apply the general method
for calculating the equilibrium two-body correlations, we
Here we regard-kgTc®(r) and—kgTc(r) as the effective  take liquids composed of two-sit&=2) homonuclear mol-
intra- and intermolecular site-site potentials, respectively, irecules. More explicitly, we consider two models: liquid ni-
conformity with Eq.(7). trogen(LN) and modifiedn-butane(MNB) liquid with two
With these preparations we proceed to the variationastable bond lengths. Liquid butane is extensively studied in
principle of the DFT[3], which enables us to express the connection with a conformational transition between the
two-body correlationsh 5,0, in terms of the intra- and trans and gauche states from both theoretical(antherica)
inter-DCFs. Equilibrium density fields,, ¢(r) for all @ and ~ experimental sidef12,13 and our MNB may serve as a toy
n'%r) for a#a are determined as the solution to the varia-model for studying conformational equilibrium.
tional equations First we consider the LN for which the intermolecular
site-site potentialy®(r) is chosen to be a Lennard-Jones one
O/ ONalr) =t o $5(r) = e[ (al) 12 (a1r)F), an

with 0=3.341 A ands=0.6075<10"** ergs[10,8c)]. As for

] ] ) the intramolecular interactiop®(r), we take a Morse poten-
From the Percus trick6], which enables us to discuss the ijg)

two-body correlations, such as the radial distribution func-

SF1on V() =pn?  (a#ag). (12)

tions, based on the one-body distribution, we notice that dA(r)=Uf1—exp—a(r—rg)}1> (LN), (18
NG (N =N(Ngg 1) =Ny 1), (12 with U,=1.5865<10 ! ergs,a=2.443 A'%, andr,=1.1 A
[11].
waao(f)=n58£q(r)7 (13) For the MNB we first replace the four-site model, often

used to represent thebutane molecule by the effective two-
o ] ] site one as shown in Fig. 1. As for the intermolecular site-site
where the equilibrium density fieldsn,e{r) and potential we choose the same one as that used for the LN,

nioedr) (a#ap) depend on only from the isotropy of the Eq. (17). For the intramolecular site-site potential we take a
system around a fixed sitgy. The chemical potentialg,  double-well potential

and ,u,(c?) are determined from the boundary conditions
gaao(r)—>1 asr—o and the normalization, the second of d3(r)=Uqy(r+ay)(r+ay)(r+as)(r+a,) (MNB),
Egs.(3). From Eqs.(10)—(13) we have (19
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FIG. 1. Originaln-butane model with four sites and the MNB
with two sites.

1.0 1 L 1 1 1 1
with Uy=2.175x10 1° ergs,a;=—1.0508 A,a,=—1.1798 0.9 L ootz 13 14 15 16

A, a;=—1.304 A, anda,=—1.4573 A. These parameter val-

ues are chosen based on the following reasoning: For the o ) L )
two-site n-butane molecule we denote byandlt the bond FIG. 2. Intramolecular site-site potentiaf(r) with r in units of
length of the gauche and trans states, respectifféity. 1). ~ angstroms fota the LN in units of 10" ergs andb) the MNB in
First we define two nondimensional quantities that compar&™'ts of 10 ergs.

energy and length scales between the LN andntreitane
systems: cif=-c%* 0, w=n[c+ciP* o], (23

Re=en/eng, Ri=rellg, (20) h=c+2w*c+w*c*w+2n[cxh+w*crh]. (24

wheregyg denotes the energy parameter of the Lenard-Jon .
potential forn butane[12]. As for ¢?(r), we approximate e'Fhus the set of equatior(1)—(24) forms the closed equa-

. tions for five unknowns, which we solve numerically by an

the Scott-Scheragés [14] potential by a double-well po- . . .
tential (19) in which the original length scale in the SS po- |t_efgt|onlmetlr10d "’;]S.' frc])l!ows. We stgrt_ from the t][aar:‘oréhé
tential is multiplied byR, so thatl ; corresponds to. and the rigid molecule, which 15 expressed in terms o the eac
original energy sacléespecially the barrier heighin the SS function[5], and sqlve Egs(21) and(24) to obtain the trial
potential is multiplied byR, since we use the same interac- h (pr g) andc functions. Then we tum to Eq(SZ%) a”d(zf?'
tion ¢°(r) for both the LN and the MNB. Figures(@ and which are now solved to obtain a nawandciy andcs;.
2(b) show ¢(r) for the LN and the MNB, respectively. The This procedure is repeated until it converges. As is often the
trans state with long bond length has lower energy compare se in solving the HNC equations, we first start from a
to the gauche state. igh-temperature, low-density state and gradually approach

From the symmetry inherent in our model systems, therdhe liquid state of our interest. Usually it takes more than

are five unknown quantities for the static correlations intro- 10?\|0 |terat|?ns tto achieve convlergenlct:e btained b i
duced up to now, that |s 9= %22 9=0, Cu ow we turn to our numerical results obtained by solving
(0

= Cpy=C1p=C, W=, 0(11 49, andc (9. The HNC equa- the integral equations. First we consider LN. Figuréa) 3

and 3b) show, respectively, the densitp) and temperature
tions (16) and (15) take the form (T) dependence of the intramolecular correlatiofr). We
g=1+h=exd —B¢°+h—c], (21)  notice from Fig. 8) that asn increaseswith T fixed at
typical liquid temperature, say[=72.2 K), the center of
Inw=2ncxh+c{P*w—Bep2+C. (22)  w(r) shifts to the left indicating that molecules shrink due to

packing effects. As for thermal effects @{r) we observe,
The ISF OZ relation$4) and(5) are reduced, respectively, to as expected, broadening of the distributiefr) as T in-
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FIG. 3. Intramolecular two-body correlationgr) of the LN for FIG. 5. Intramolecular two-body correlatioagr) of the MNB
(@ n=0.015 and 0.024 A% (T=72.2 K) and(h) T=72.2, 200, and for (a) n=0.015, 0.018 66, and 0.0220 A (T=72.2 K) and (b)
500 K (n=0.018 66 A3 with r in units of angstroms. T=72.2, 200, and 500 Kn=0.018 66 A3 with r in units of

angstroms.

creaseqwith n fixed at typical liquid densityn=0.018 66

A3, Figure 3 shows that changes dfr) are mainly pro- density liquids, the bond length simply increasesTas-

duced by thermal effects. In order to examine intramoleculagreases. However, at the highest density we examined

structural changes more closely we show in Fig. 4 the aver=0.024 A™%), molecules seem to shrink asincreases. This

age bond length, defined bidr r w(r), as a function ofT suggests that at high density packing or pressure effects can

for various densities. We see that except for very-high-dominate thermal-expansion effects at least at low tempera-
ture. Before proceeding to MNB we note that the radial dis-

tribution functiong(r) is only slightly changed by allowing

e ' ' ' ' ' ‘ ' ' nonrigidity for molecules. More precisely, it is changed
1.1015 | maximally by 10 near the first peak af(r).
We now consider MNB, for which we expect from Fig. 2
£ 1i01f —] a more drastic role played by molecular nonrigidity than a
g ] for LN. In Fig. 5 we showw(r) for variousn andT. Reflect-
211005 | 1 ing the double-well potential Eq19), w(r) usually has two
é peaks, one near=1,=1.1 A and the other=1,=1.4 A. In
& Mr // l Figs. 5a) and §b) the n(T) dependence oé(r) is plotted.
e - As observed bycomputey experimentg§13], the population
© 1.0995 - -1 . .
of molecules in the gauche state is seen from Fig)
1099 L i increase as becomes largéwith T kept constant This is
T due to packing effects, which are eminent at high densities
1.0985 : ' ' ' 1 L L L [12]. Also in Fig. 5b) we observe similar behaviors ds
50 100 150 200 250 300 350 400 450 500

increasegwith n kept constant This point is shown more
quantitatively in Fig. 6, which depicts the fraction of mol-
FIG. 4. Average bond length in units of amperes of the LN as aecules in the short-bon@auchg¢ state as a function of for
function of T(K) for various densities. From the tap=0.015, various n’s. We notice that, except for extremely-high-
0.017, 0.01866, 0.02, 0.022, and 0.024°A density liquids, the fraction increases &sincreases, ap-

temperature
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FIG. 6. Fraction of the short bond length isomégauche state FIG. 7. Radial distribution function for deformable and rigid

as a function of temperatur&) for various densities. From the top molecular liquids withr in units of angstroms. For the definition
n=0.022, 0.02, 0.0186, 0.017, and 0.015%A see the text.

proaching; as T—e. At high densﬂy the gauche state is molecular structures, we derived and solved different closure
populated more at low and_the fraction approachésasT equations and discussed thermal and presguaeking ef-
increases. Finally, we consider effects of this molecular degcs i geformable molecular liquids. Important works
formability on mte_rm_ole(_:ular corr.elat|.ons. In Fig. 7 we com- [12,13,19 have already been published dealing with similar
pare two radial dlstr!buuon funcuons. one for the MNB lig- problems, and we conclude this paper with some comments.
uid obtained by solving the mtegrall Qquatldﬂs)—(24) and For small molecules Chandler and co-workgt&] have de-
the other, denoted by(r), for a rigid model, which we eiqneq a theory for two-body correlations in liquids based
calculate by the formula on the ISF, in which the intra- and intermolecular correla-
_ tions are determined self-consistently. In treating the in-
9:(1)=Tagr(rllg) + Fugr(rlly, @9 tramolecular correlatiom,, they introduce and calculate a
wheref  (f,) denotes the fraction of molecules in the gauchecavity distribution function instead of using the ISF OZ re-
(tran9 state ancgr(r|lg) is the radial distribution function lation (15). Furthermore, they use the Percus-Yevick closure
for the rigid molecular liquid with bond length fixed g.  (RISM approximationinstead of the HNC closuré6). Itis
Thus we use Eqs(21) and (24) and the rigid condition noted that in spite of these apparent differences, both theo-
w(r)=48(r—1,) to calculateg,(r|l,). From Fig. 7 we note ries can reproduce the packing effects observed in high-
that deformability makesy(r) smooth, washing out the density liquids[13]. The ISF and DFT are also utilized ex-
shoulder of the first peak usually observed for rigid molecutensively to study equilibrium properties of polymer
lar liquids due to strong configurational constraint imposedsolutions[15]. We are currently interested in generalizing
by rigidity. For larger the two g(r)’s nearly coincide as our approach developed here for small molecules so that it
expected. From the above we may conclude that our apcould be applied to polymer systems. Also it is interesting to
proach, based on the integral equatié®$)—(24), produces Mmake use of the time-dependent DETE] to discuss dy-
static correlations in accord with existing experiments. How-hamic aspects of isomerization. These points are planned to
ever, it is necessary to study more realistic systems in orddre discussed separately in the future.
to achieve a more quantitative comparison with experiments.
In this paper we studied equilibrium two-body correla-  This work was supported in part by the Grants-in-Aid for
tions w andh in Eq. (2), based on the ISF5] and DFT[7]. Scientific Research from the Japanese Ministry of Education,
By applying the Percus trick6] to both the intra- and inter- Science, Sports, and Culture.
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